How to setup a data pipeline in Microsoft Azure Data Factory v2?

Step 1

Create «Linked Services» for the data source and the sink («Manage» → «Linked Services»).

Step 2

Specify the authentication method (e.g., Managed Identity, Service Principal, SQL Authentication, etc.).

Step 3

If your data source or sink is on-premises or behind a firewall, it is necessary to:
3.1) Install and configure the Self-Hosted Integration Runtime (SHIR).
3.2) Configure network rules or additional certificates to ensure a secure connection.

Step 4

Create datasets for each source and sink.
I recommend configuring these as parameterised (to specify file paths, table names, and other variables in a flexible way).

Step 5

Create a pipeline («Author» → «+» → «Pipeline»).

Step 6

Add «Activities» such as «Copy Data» or «Mapping Data Flow» to the pipeline (if transformation is required).
To use «Mapping Data Flow», it is necessary to enable Data Flow support in the Integration Runtime («Manage» → «Integration runtimes»).

Step 7

Configure the input and output dataset for the pipeline, specifying:
7.1) The source (e.g., Azure SQL Database Dataset, REST API, Amazon S3, or an on-premises database via SHIR).
7.2) The sink (e.g., Azure Blob Storage Dataset, Data Lake Storage, or any other of the 90+ supported connections).

Step 8

In the «Settings» section for «Copy Data», specify the copy parameters (method, parallelism, behavior on errors).

Step 9

If necessary, add other «Activities» (e.g., «Lookup», «Stored Procedure», «Script», «Databricks Notebook», «Web Activity», «Execute Pipeline», «ForEach», etc.), according to the needs of the project.

Step 10

When working with recurring copy or transformation templates, or when it is necessary to flexibly change table names and file paths, pipeline parameters, dataset parameters and dynamic content expressions can be used.

Step 11

Test the pipeline:
11.1) Click on «Debug» at the top of the screen to run the pipeline in debug mode.
11.2) Check the execution log in «Output» or go to «Monitor» → «Pipeline runs».

Step 12

Add «Triggers» for automatic execution.

Step 13

Connect a Git repository (Azure DevOps or GitHub) for version control and collaborative development (if not already done).
This will make it easier for your developer (when he recovers) to track changes made to ADF during his illness, and will also allow the use of CI/CD processes when moving pipelines between environments.

Step 14

Publish all changes.
If it is planned to move solutions between multiple environments (Dev, Test, Prod) or to parameterise ADF objects on a large scale, it is recommended to use an automated deployment approach (ARM templates or Bicep) together with CI/CD (e.g., Azure DevOps or GitHub Actions).
This will simplify the transfer and update of your pipeline, datasets, and linked services across different environments without manual duplication.

Step 15

Configure monitoring and alerts.
In the «Monitor» section, it is possible to use built-in alert rules and metrics (via Azure Monitor) to automatically track the state of pipelines and receive notifications (via email, SMS, etc.) in the event of failures or deviations from normal operation.